import warnings
from abc import abstractmethod
from datetime import datetime
from typing import Dict
from typing import List
from typing import Optional
from typing import Sequence
from typing import Tuple
import numpy as np
import pandas as pd
from statsmodels.tools.sm_exceptions import ValueWarning
from statsmodels.tsa.statespace.sarimax import SARIMAX
from statsmodels.tsa.statespace.sarimax import SARIMAXResultsWrapper
from statsmodels.tsa.statespace.simulation_smoother import SimulationSmoother
from etna.distributions import BaseDistribution
from etna.distributions import CategoricalDistribution
from etna.distributions import IntDistribution
from etna.libs.pmdarima_utils import seasonal_prediction_with_confidence
from etna.models.base import BaseAdapter
from etna.models.base import PredictionIntervalContextIgnorantAbstractModel
from etna.models.mixins import PerSegmentModelMixin
from etna.models.mixins import PredictionIntervalContextIgnorantModelMixin
from etna.models.utils import determine_freq
from etna.models.utils import determine_num_steps
from etna.models.utils import select_observations
warnings.filterwarnings(
message="No frequency information was provided, so inferred frequency .* will be used",
action="ignore",
category=ValueWarning,
module="statsmodels.tsa.base.tsa_model",
)
[docs]class _SARIMAXBaseAdapter(BaseAdapter):
"""Base class for adapters based on :py:class:`statsmodels.tsa.statespace.sarimax.SARIMAX`."""
def __init__(self):
self.regressor_columns = None
self._fit_results = None
self._freq = None
self._first_train_timestamp = None
self._last_train_timestamp = None
[docs] def fit(self, df: pd.DataFrame, regressors: List[str]) -> "_SARIMAXBaseAdapter":
"""
Fits a SARIMAX model.
Parameters
----------
df:
Features dataframe
regressors:
List of the columns with regressors
Returns
-------
:
Fitted model
"""
self.regressor_columns = regressors
self._encode_categoricals(df)
self._check_df(df)
exog_train = self._select_regressors(df)
self._fit_results = self._get_fit_results(endog=df["target"], exog=exog_train)
self._freq = determine_freq(timestamps=df["timestamp"])
self._first_train_timestamp = df["timestamp"].min()
self._last_train_timestamp = df["timestamp"].max()
return self
def _make_prediction(
self, df: pd.DataFrame, prediction_interval: bool, quantiles: Sequence[float], dynamic: bool
) -> pd.DataFrame:
"""Make predictions taking into account ``dynamic`` parameter."""
if self._fit_results is None:
raise ValueError("Model is not fitted! Fit the model before calling predict method!")
horizon = len(df)
self._encode_categoricals(df)
self._check_df(df, horizon)
exog_future = self._select_regressors(df)
start_timestamp = df["timestamp"].min()
end_timestamp = df["timestamp"].max()
# determine index of start_timestamp if counting from first timestamp of train
start_idx = determine_num_steps(
start_timestamp=self._first_train_timestamp, end_timestamp=start_timestamp, freq=self._freq # type: ignore
)
# determine index of end_timestamp if counting from first timestamp of train
end_idx = determine_num_steps(
start_timestamp=self._first_train_timestamp, end_timestamp=end_timestamp, freq=self._freq # type: ignore
)
if prediction_interval:
forecast, _ = seasonal_prediction_with_confidence(
arima_res=self._fit_results, start=start_idx, end=end_idx, X=exog_future, alpha=0.05, dynamic=dynamic
)
y_pred = pd.DataFrame({"mean": forecast})
for quantile in quantiles:
# set alpha in the way to get a desirable quantile
alpha = min(quantile * 2, (1 - quantile) * 2)
_, borders = seasonal_prediction_with_confidence(
arima_res=self._fit_results,
start=start_idx,
end=end_idx,
X=exog_future,
alpha=alpha,
dynamic=dynamic,
)
if quantile < 1 / 2:
series = borders[:, 0]
else:
series = borders[:, 1]
y_pred[f"mean_{quantile:.4g}"] = series
else:
forecast, _ = seasonal_prediction_with_confidence(
arima_res=self._fit_results, start=start_idx, end=end_idx, X=exog_future, alpha=0.05, dynamic=dynamic
)
y_pred = pd.DataFrame({"mean": forecast})
rename_dict = {
column: column.replace("mean", "target") for column in y_pred.columns if column.startswith("mean")
}
y_pred = y_pred.rename(rename_dict, axis=1)
return y_pred
[docs] def forecast(self, df: pd.DataFrame, prediction_interval: bool, quantiles: Sequence[float]) -> pd.DataFrame:
"""
Compute autoregressive predictions from a SARIMAX model.
Parameters
----------
df:
Features dataframe
prediction_interval:
If True returns prediction interval for forecast
quantiles:
Levels of prediction distribution
Returns
-------
:
DataFrame with predictions
"""
return self._make_prediction(df=df, prediction_interval=prediction_interval, quantiles=quantiles, dynamic=True)
[docs] def predict(self, df: pd.DataFrame, prediction_interval: bool, quantiles: Sequence[float]) -> pd.DataFrame:
"""
Compute predictions from a SARIMAX model and use true in-sample data as lags if possible.
Parameters
----------
df:
Features dataframe
prediction_interval:
If True returns prediction interval for forecast
quantiles:
Levels of prediction distribution
Returns
-------
:
DataFrame with predictions
"""
return self._make_prediction(df=df, prediction_interval=prediction_interval, quantiles=quantiles, dynamic=False)
@abstractmethod
def _get_fit_results(self, endog: pd.Series, exog: pd.DataFrame) -> SARIMAXResultsWrapper:
pass
def _check_df(self, df: pd.DataFrame, horizon: Optional[int] = None):
if self.regressor_columns is None:
raise ValueError("Something went wrong, regressor_columns is None!")
column_to_drop = [col for col in df.columns if col not in ["target", "timestamp"] + self.regressor_columns]
if column_to_drop:
warnings.warn(
message=f"SARIMAX model does not work with exogenous features (features unknown in future).\n "
f"{column_to_drop} will be dropped"
)
if horizon:
short_regressors = [regressor for regressor in self.regressor_columns if df[regressor].count() < horizon]
if short_regressors:
raise ValueError(
f"Regressors {short_regressors} are too short for chosen horizon value.\n "
"Try lower horizon value, or drop this regressors."
)
def _select_regressors(self, df: pd.DataFrame) -> Optional[pd.DataFrame]:
if self.regressor_columns:
exog_future = df[self.regressor_columns]
exog_future.index = df["timestamp"]
else:
exog_future = None
return exog_future
def _encode_categoricals(self, df: pd.DataFrame) -> None:
categorical_cols = df.select_dtypes(include=["category"]).columns.tolist()
try:
df.loc[:, categorical_cols] = df[categorical_cols].astype(int)
except ValueError:
raise ValueError(
f"Categorical columns {categorical_cols} can not be converted to int.\n "
"Try to encode this columns manually."
)
[docs] def get_model(self) -> SARIMAXResultsWrapper:
"""Get :py:class:`statsmodels.tsa.statespace.sarimax.SARIMAXResultsWrapper` that is used inside etna class.
Returns
-------
:
Internal model
"""
return self._fit_results
@staticmethod
def _prepare_components_df(components: np.ndarray, model: SARIMAX) -> pd.DataFrame:
"""Prepare `pd.DataFrame` with components."""
if model.exog_names is not None:
components_names = model.exog_names[:]
else:
components_names = []
if model.seasonal_periods == 0:
components_names.append("arima")
else:
components_names.append("sarima")
df = pd.DataFrame(data=components, columns=components_names)
return df.add_prefix("target_component_")
@staticmethod
def _prepare_design_matrix(ssm: SimulationSmoother) -> np.ndarray:
"""Extract design matrix from state space model."""
design_mat = ssm["design"]
if len(design_mat.shape) == 2:
design_mat = design_mat[..., np.newaxis]
return design_mat
def _mle_regression_decomposition(self, state: np.ndarray, ssm: SimulationSmoother, exog: np.ndarray) -> np.ndarray:
"""Estimate SARIMAX components for MLE regression case.
SARIMAX representation as SSM: https://www.statsmodels.org/dev/statespace.html
In MLE case exogenous data fitted separately from other components:
https://github.com/statsmodels/statsmodels/blob/main/statsmodels/tsa/statespace/sarimax.py#L1644
"""
# get design matrix from SSM
design_mat = self._prepare_design_matrix(ssm)
# estimate SARIMA component
components = np.sum(design_mat * state, axis=1).T
if len(exog) > 0:
# restore parameters for exogenous variabales
exog_params = np.linalg.lstsq(a=exog, b=np.squeeze(ssm["obs_intercept"]))[0]
# estimate exogenous components and append to others
weighted_exog = exog * exog_params[np.newaxis]
components = np.concatenate([weighted_exog, components], axis=1)
return components
def _state_regression_decomposition(self, state: np.ndarray, ssm: SimulationSmoother, k_exog: int) -> np.ndarray:
"""Estimate SARIMAX components for state regression case.
SARIMAX representation as SSM: https://www.statsmodels.org/dev/statespace.html
In state regression case parameters for exogenous variables estimated inside SSM.
"""
# get design matrix from SSM
design_mat = self._prepare_design_matrix(ssm)
if k_exog > 0:
# estimate SARIMA component
sarima = np.sum(design_mat[:, :-k_exog] * state[:-k_exog], axis=1)
# obtain params from SSM and estimate exogenous components
weighted_exog = np.squeeze(design_mat[:, -k_exog:] * state[-k_exog:])
components = np.concatenate([weighted_exog, sarima], axis=0).T
else:
# in this case we can take whole matrix for SARIMA component
components = np.sum(design_mat * state, axis=1).T
return components
[docs] def predict_components(self, df: pd.DataFrame) -> pd.DataFrame:
"""Estimate prediction components.
Parameters
----------
df:
features dataframe
Returns
-------
:
dataframe with prediction components
"""
if df["timestamp"].min() < self._first_train_timestamp or df["timestamp"].max() > self._last_train_timestamp:
raise ValueError("To estimate out-of-sample prediction decomposition use `forecast` method.")
fit_results = self._fit_results
model = fit_results.model
if model.hamilton_representation:
raise ValueError("Prediction decomposition is not implemented for Hamilton representation of ARMA!")
state = fit_results.predicted_state[:, :-1]
if model.mle_regression:
components = self._mle_regression_decomposition(state=state, ssm=model.ssm, exog=model.exog)
else:
components = self._state_regression_decomposition(state=state, ssm=model.ssm, k_exog=model.k_exog)
components_df = self._prepare_components_df(components=components, model=model)
components_df = select_observations(
df=components_df,
timestamps=df["timestamp"],
start=self._first_train_timestamp,
end=self._last_train_timestamp,
freq=self._freq,
)
return components_df
[docs] def forecast_components(self, df: pd.DataFrame) -> pd.DataFrame:
"""Estimate forecast components.
Parameters
----------
df:
features dataframe
Returns
-------
:
dataframe with forecast components
"""
if df["timestamp"].min() <= self._last_train_timestamp:
raise ValueError("To estimate in-sample prediction decomposition use `predict` method.")
horizon = determine_num_steps(
start_timestamp=self._last_train_timestamp, end_timestamp=df["timestamp"].max(), freq=self._freq
)
fit_results = self._fit_results
model = fit_results.model
if model.hamilton_representation:
raise ValueError("Prediction decomposition is not implemented for Hamilton representation of ARMA!")
self._encode_categoricals(df)
self._check_df(df, horizon)
exog_future = self._select_regressors(df)
forecast_results = fit_results.get_forecast(horizon, exog=exog_future).prediction_results.results
state = forecast_results.predicted_state[:, :-1]
if model.mle_regression:
# If there are no exog variales `mle_regression` will be set to `False`
# even if user set to `True`.
components = self._mle_regression_decomposition(
state=state, ssm=forecast_results.model, exog=exog_future.values # type: ignore
)
else:
components = self._state_regression_decomposition(
state=state, ssm=forecast_results.model, k_exog=model.k_exog
)
components_df = self._prepare_components_df(components=components, model=model)
components_df = select_observations(
df=components_df, timestamps=df["timestamp"], end=df["timestamp"].max(), periods=horizon, freq=self._freq
)
return components_df
[docs]class _SARIMAXAdapter(_SARIMAXBaseAdapter):
"""
Class for holding Sarimax model.
Notes
-----
We use SARIMAX [1] model from statsmodels package. Statsmodels package uses `exog` attribute for
`exogenous regressors` which should be known in future, however we use exogenous for
additional features what is not known in future, and regressors for features we do know in
future.
.. `SARIMAX: <https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.sarimax.SARIMAX.html>_`
"""
def __init__(
self,
order: Tuple[int, int, int] = (1, 0, 0),
seasonal_order: Tuple[int, int, int, int] = (0, 0, 0, 0),
trend: Optional[str] = None,
measurement_error: bool = False,
time_varying_regression: bool = False,
mle_regression: bool = True,
simple_differencing: bool = False,
enforce_stationarity: bool = True,
enforce_invertibility: bool = True,
hamilton_representation: bool = False,
concentrate_scale: bool = False,
trend_offset: float = 1,
use_exact_diffuse: bool = False,
dates: Optional[List[datetime]] = None,
freq: Optional[str] = None,
missing: str = "none",
validate_specification: bool = True,
**kwargs,
):
"""
Init SARIMAX model with given params.
Parameters
----------
order:
The (p,d,q) order of the model for the number of AR parameters,
differences, and MA parameters. `d` must be an integer
indicating the integration order of the process, while
`p` and `q` may either be an integers indicating the AR and MA
orders (so that all lags up to those orders are included) or else
iterables giving specific AR and / or MA lags to include. Default is
an AR(1) model: (1,0,0).
seasonal_order:
The (P,D,Q,s) order of the seasonal component of the model for the
AR parameters, differences, MA parameters, and periodicity.
`D` must be an integer indicating the integration order of the process,
while `P` and `Q` may either be an integers indicating the AR and MA
orders (so that all lags up to those orders are included) or else
iterables giving specific AR and / or MA lags to include. `s` is an
integer giving the periodicity (number of periods in season), often it
is 4 for quarterly data or 12 for monthly data. Default is no seasonal
effect.
trend:
Parameter controlling the deterministic trend polynomial :math:`A(t)`.
Can be specified as a string where 'c' indicates a constant (i.e. a
degree zero component of the trend polynomial), 't' indicates a
linear trend with time, and 'ct' is both. Can also be specified as an
iterable defining the non-zero polynomial exponents to include, in
increasing order. For example, `[1,1,0,1]` denotes
:math:`a + bt + ct^3`. Default is to not include a trend component.
measurement_error:
Whether or not to assume the endogenous observations `endog` were
measured with error. Default is False.
time_varying_regression:
Used when an explanatory variables, `exog`, are provided provided
to select whether or not coefficients on the exogenous regressors are
allowed to vary over time. Default is False.
mle_regression:
Whether or not to use estimate the regression coefficients for the
exogenous variables as part of maximum likelihood estimation or through
the Kalman filter (i.e. recursive least squares). If
`time_varying_regression` is True, this must be set to False. Default
is True.
simple_differencing:
Whether or not to use partially conditional maximum likelihood
estimation. If True, differencing is performed prior to estimation,
which discards the first :math:`s D + d` initial rows but results in a
smaller state-space formulation. See the Notes section for important
details about interpreting results when this option is used. If False,
the full SARIMAX model is put in state-space form so that all
datapoints can be used in estimation. Default is False.
enforce_stationarity:
Whether or not to transform the AR parameters to enforce stationarity
in the autoregressive component of the model. Default is True.
enforce_invertibility:
Whether or not to transform the MA parameters to enforce invertibility
in the moving average component of the model. Default is True.
hamilton_representation:
Whether or not to use the Hamilton representation of an ARMA process
(if True) or the Harvey representation (if False). Default is False.
concentrate_scale:
Whether or not to concentrate the scale (variance of the error term)
out of the likelihood. This reduces the number of parameters estimated
by maximum likelihood by one, but standard errors will then not
be available for the scale parameter.
trend_offset:
The offset at which to start time trend values. Default is 1, so that
if `trend='t'` the trend is equal to 1, 2, ..., nobs. Typically is only
set when the model created by extending a previous dataset.
use_exact_diffuse:
Whether or not to use exact diffuse initialization for non-stationary
states. Default is False (in which case approximate diffuse
initialization is used).
dates:
If no index is given by `endog` or `exog`, an array-like object of
datetime objects can be provided.
freq:
If no index is given by `endog` or `exog`, the frequency of the
time-series may be specified here as a Pandas offset or offset string.
missing:
Available options are 'none', 'drop', and 'raise'. If 'none', no nan
checking is done. If 'drop', any observations with nans are dropped.
If 'raise', an error is raised. Default is 'none'.
validate_specification:
If True, validation of hyperparameters is performed.
"""
self.order = order
self.seasonal_order = seasonal_order
self.trend = trend
self.measurement_error = measurement_error
self.time_varying_regression = time_varying_regression
self.mle_regression = mle_regression
self.simple_differencing = simple_differencing
self.enforce_stationarity = enforce_stationarity
self.enforce_invertibility = enforce_invertibility
self.hamilton_representation = hamilton_representation
self.concentrate_scale = concentrate_scale
self.trend_offset = trend_offset
self.use_exact_diffuse = use_exact_diffuse
self.dates = dates
self.freq = freq
self.missing = missing
self.validate_specification = validate_specification
self.kwargs = kwargs
super().__init__()
def _get_fit_results(self, endog: pd.Series, exog: pd.DataFrame):
# make it a numpy array for forgetting about indices, it is necessary for seasonal_prediction_with_confidence
endog_np = endog.values
model = SARIMAX(
endog=endog_np,
exog=exog,
order=self.order,
seasonal_order=self.seasonal_order,
trend=self.trend,
measurement_error=self.measurement_error,
time_varying_regression=self.time_varying_regression,
mle_regression=self.mle_regression,
simple_differencing=self.simple_differencing,
enforce_stationarity=self.enforce_stationarity,
enforce_invertibility=self.enforce_invertibility,
hamilton_representation=self.hamilton_representation,
concentrate_scale=self.concentrate_scale,
trend_offset=self.trend_offset,
use_exact_diffuse=self.use_exact_diffuse,
dates=self.dates,
freq=self.freq,
missing=self.missing,
validate_specification=self.validate_specification,
**self.kwargs,
)
result = model.fit()
return result
[docs]class SARIMAXModel(
PerSegmentModelMixin, PredictionIntervalContextIgnorantModelMixin, PredictionIntervalContextIgnorantAbstractModel
):
"""
Class for holding Sarimax model.
Method ``predict`` can use true target values only on train data on future data autoregression
forecasting will be made even if targets are known.
Notes
-----
We use :py:class:`statsmodels.tsa.sarimax.SARIMAX`. Statsmodels package uses `exog` attribute for
`exogenous regressors` which should be known in future, however we use exogenous for
additional features what is not known in future, and regressors for features we do know in
future.
This model supports in-sample and out-of-sample prediction decomposition.
Prediction components for SARIMAX model are: exogenous and SARIMA components.
Decomposition is obtained directly from fitted model parameters.
"""
def __init__(
self,
order: Tuple[int, int, int] = (1, 0, 0),
seasonal_order: Tuple[int, int, int, int] = (0, 0, 0, 0),
trend: Optional[str] = None,
measurement_error: bool = False,
time_varying_regression: bool = False,
mle_regression: bool = True,
simple_differencing: bool = False,
enforce_stationarity: bool = True,
enforce_invertibility: bool = True,
hamilton_representation: bool = False,
concentrate_scale: bool = False,
trend_offset: float = 1,
use_exact_diffuse: bool = False,
dates: Optional[List[datetime]] = None,
freq: Optional[str] = None,
missing: str = "none",
validate_specification: bool = True,
**kwargs,
):
"""
Init SARIMAX model with given params.
Parameters
----------
order:
The (p,d,q) order of the model for the number of AR parameters,
differences, and MA parameters. `d` must be an integer
indicating the integration order of the process, while
`p` and `q` may either be an integers indicating the AR and MA
orders (so that all lags up to those orders are included) or else
iterables giving specific AR and / or MA lags to include. Default is
an AR(1) model: (1,0,0).
seasonal_order:
The (P,D,Q,s) order of the seasonal component of the model for the
AR parameters, differences, MA parameters, and periodicity.
`D` must be an integer indicating the integration order of the process,
while `P` and `Q` may either be an integers indicating the AR and MA
orders (so that all lags up to those orders are included) or else
iterables giving specific AR and / or MA lags to include. `s` is an
integer giving the periodicity (number of periods in season), often it
is 4 for quarterly data or 12 for monthly data. Default is no seasonal
effect.
trend:
Parameter controlling the deterministic trend polynomial :math:`A(t)`.
Can be specified as a string where 'c' indicates a constant (i.e. a
degree zero component of the trend polynomial), 't' indicates a
linear trend with time, and 'ct' is both. Can also be specified as an
iterable defining the non-zero polynomial exponents to include, in
increasing order. For example, `[1,1,0,1]` denotes
:math:`a + bt + ct^3`. Default is to not include a trend component.
measurement_error:
Whether or not to assume the endogenous observations `endog` were
measured with error. Default is False.
time_varying_regression:
Used when an explanatory variables, `exog`, are provided provided
to select whether or not coefficients on the exogenous regressors are
allowed to vary over time. Default is False.
mle_regression:
Whether or not to use estimate the regression coefficients for the
exogenous variables as part of maximum likelihood estimation or through
the Kalman filter (i.e. recursive least squares). If
`time_varying_regression` is True, this must be set to False. Default
is True.
simple_differencing:
Whether or not to use partially conditional maximum likelihood
estimation. If True, differencing is performed prior to estimation,
which discards the first :math:`s D + d` initial rows but results in a
smaller state-space formulation. See the Notes section for important
details about interpreting results when this option is used. If False,
the full SARIMAX model is put in state-space form so that all
datapoints can be used in estimation. Default is False.
enforce_stationarity:
Whether or not to transform the AR parameters to enforce stationarity
in the autoregressive component of the model. Default is True.
enforce_invertibility:
Whether or not to transform the MA parameters to enforce invertibility
in the moving average component of the model. Default is True.
hamilton_representation:
Whether or not to use the Hamilton representation of an ARMA process
(if True) or the Harvey representation (if False). Default is False.
concentrate_scale:
Whether or not to concentrate the scale (variance of the error term)
out of the likelihood. This reduces the number of parameters estimated
by maximum likelihood by one, but standard errors will then not
be available for the scale parameter.
trend_offset:
The offset at which to start time trend values. Default is 1, so that
if `trend='t'` the trend is equal to 1, 2, ..., nobs. Typically is only
set when the model created by extending a previous dataset.
use_exact_diffuse:
Whether or not to use exact diffuse initialization for non-stationary
states. Default is False (in which case approximate diffuse
initialization is used).
dates:
If no index is given by `endog` or `exog`, an array-like object of
datetime objects can be provided.
freq:
If no index is given by `endog` or `exog`, the frequency of the
time-series may be specified here as a Pandas offset or offset string.
missing:
Available options are 'none', 'drop', and 'raise'. If 'none', no nan
checking is done. If 'drop', any observations with nans are dropped.
If 'raise', an error is raised. Default is 'none'.
validate_specification:
If True, validation of hyperparameters is performed.
"""
self.order = order
self.seasonal_order = seasonal_order
self.trend = trend
self.measurement_error = measurement_error
self.time_varying_regression = time_varying_regression
self.mle_regression = mle_regression
self.simple_differencing = simple_differencing
self.enforce_stationarity = enforce_stationarity
self.enforce_invertibility = enforce_invertibility
self.hamilton_representation = hamilton_representation
self.concentrate_scale = concentrate_scale
self.trend_offset = trend_offset
self.use_exact_diffuse = use_exact_diffuse
self.dates = dates
self.freq = freq
self.missing = missing
self.validate_specification = validate_specification
self.kwargs = kwargs
super(SARIMAXModel, self).__init__(
base_model=_SARIMAXAdapter(
order=self.order,
seasonal_order=self.seasonal_order,
trend=self.trend,
measurement_error=self.measurement_error,
time_varying_regression=self.time_varying_regression,
mle_regression=self.mle_regression,
simple_differencing=self.simple_differencing,
enforce_stationarity=self.enforce_stationarity,
enforce_invertibility=self.enforce_invertibility,
hamilton_representation=self.hamilton_representation,
concentrate_scale=self.concentrate_scale,
trend_offset=self.trend_offset,
use_exact_diffuse=self.use_exact_diffuse,
dates=self.dates,
freq=self.freq,
missing=self.missing,
validate_specification=self.validate_specification,
**self.kwargs,
)
)
[docs] def params_to_tune(self) -> Dict[str, BaseDistribution]:
"""Get default grid for tuning hyperparameters.
This grid tunes parameters: ``order.0``, ``order.1``, ``order.2``, ``trend``.
If ``self.num_periods`` is greater than zero, then it also tunes parameters:
``seasonal_order.0``, ``seasonal_order.1``, ``seasonal_order.2``.
Other parameters are expected to be set by the user.
Returns
-------
:
Grid to tune.
"""
grid: Dict[str, "BaseDistribution"] = {
"order.0": IntDistribution(low=1, high=6),
"order.1": IntDistribution(low=1, high=2),
"order.2": IntDistribution(low=1, high=6),
"trend": CategoricalDistribution(["n", "c", "t", "ct"]),
}
num_periods = self.seasonal_order[3]
if num_periods > 0:
grid.update(
{
"seasonal_order.0": IntDistribution(low=0, high=2),
"seasonal_order.1": IntDistribution(low=0, high=1),
"seasonal_order.2": IntDistribution(low=0, high=1),
}
)
return grid